当前位置:首页> 圈子> 情报资讯

2018中国人工智能产业展望

2018中国人工智能产业展望

展望 2018 年,人工智能软硬件技术创新将持续推进,认知智能渐行渐近;产业进入稳步增长阶段,行业内资源整合将加速推进;与实体经济融合不断加速,市场应用空间大步拓展 ;产业配套环境日益完善,政策、资本支持力度持续加大。与此同时,人工智能产业将持续面临底层技术积累不足、商业化应用路径不明朗、产业发展略显浮躁,以及专业人才不足等问题与挑战。为此,我国人工智能产业未来应持续推动基础领域技术创新突破,加速实现人工智能与实体经济深度融合,不断完善产业创新生态体系建设,培育形成产业开放发展氛围,大力强化人才培养培训工作。

当前,人工智能发展迅猛,日益成为引领科技进步、推动产业升级的新引擎,将深刻改变人类社会的生产生活方式,并成为新一轮国际竞争的焦点。2017 年,我国人工智能产业保持快速增长,部分技术接近或达到国际领先水平,产业规模、投融资规模和企业数量位居世界前列。

对2018年形势的基本判断    认知性应用将成为亮点

AI 芯片、计算机视觉、语音识别等技术的持续创新成为产业发展引擎。人工智能芯片以图形处理器(GPU)、现场可编程门阵列(FPGA)、特定用途集成电路(ASIC)为发展方向,寒武纪、中星微、深鉴科技、地平线机器人等初创企业通过产研结合的发展思路,积蓄了一定的研发实力。在计算机视觉技术中,以静态物体识别技术发展最为成熟,动态图像和场景识别技术尚且存在较大上升空间,在企业方面,百度、旷视科技、商汤科技、格林深瞳等企业的技术实力较为领先。语音识别技术近年来发展迅速,目前行业识别准确率已达到95%,科大讯飞、百度、搜狗、出门问问等企业有较大技术优势。预计 2018 年,芯片和算法的优化将进一步提升计算机视觉和语音识别的应用成熟度。人脸识别将成为计算机视觉技术的竞争热点,格灵深瞳等创新企业有望在动态视觉检测中取得关键突破。科大讯飞等国内语音识别技术商将利用数据优势,推动语音识别技术平台化,进一步提升多场景下的语言识别准确率。

感知智能与认知智能进一步融合,认知性应用将成为亮点。深度学习算法得到广泛应用以来,计算机视觉和语音识别等感知智能已较为成熟,其中静态图像识别准确率已达 99%,语音识别准确率已达 95%,感知智能相关技术在“量”上的积累已较为充分,人脸识别、声纹识别等浅层次(是否逻辑判断型)感知性应用得到较为充分的发展。预计 2018 年,人工智能技术可能迎来新的质变契机,浅层次感知应用将与更高水平的认知智能融合发展,能够在逻辑判断基础上实现认知推理、情感互动、辅助性决策的认知性应用将成为业界亮点。

行业资源整合将持续推进

人工智能产业进入平稳发展期。近年来,中国人工智能产业规模保持稳步增长,投融资更为理性,新增企业数量趋缓。产业规模方面,2015 年我国人工智能产业规模达 70.2 亿元,2016年达 100.6 亿元,预计 2017 年将达152 亿元,保持平稳快速增长。投融资增长方面,2015 年全年累计投融资增长率为143%, 2016 年投融资增长率为 93%,2017 年投融资增长率预计为 51%,国内人工智能产业投资更趋于理性。企业年新增数量方面,自 2015 年达到 166 家后逐步趋缓,2016 年新增企业为77 家,2017 年全年预计新增企业数量不超过50 家。截至2017 年 6 月,我国人工智能企业数量为 592 家,其中基础层、技术层和应用层企业比例约为 1 :20 :22。预计 2018 年,国内人工智能产业将延续稳步增长态势,产业规模预计将超过 230亿元,投融资事件数量将相对减少,但单笔金额增大,基础层企业将通过技术创新扩大规模,技术层和应用层企业数量将保持稳步增长。

大公司将在行业资源整合中扮演更重要角色。2017 年以来,国内互联网巨头加大力度进行战略合作与投资并购,百度先后与北汽集团、博世、大陆、哈曼、联想之星等企业达成战略合作协议,投资语音识别公司涂鸦科技和感知视觉公司xPerception。阿里巴巴投资混合智能汽车导航企业 WayRay,菜鸟物流与北汽集团和东风汽车成为战略合作伙伴。腾讯注资特斯拉和 AR 初创企业 Innovega,并依托腾讯AI lab 发布“AI in all”战略。预计 2018 年,国内平台层面资源将加速整合,大企业将通过投资并购迅速获得相应细分领域中的前沿核心技术,降低研发失败的风险,在行业资源整合中发挥越来越重要的作用。百度将以自动驾驶作为核心,着力打造技术驱动的应用型平台生态 ;阿里将以云服务为生态基础,注重消费级人工智能产品研发,将人工智能赋能于商业生态 ;腾讯将围绕用户体系组建软硬件融合的人工智能服务生态 ;科大讯飞将继续深耕语音识别领域,基于语音系统建立通用解决方案,打造智能语音开放平台。

与实体经济融合加速

人工智能与实体经济加速融合。党的十九大报告中明确指出,要推动互联网、大数据、人工智能和实体经济深度融合。人工智能是具有巨大社会和经济效益的尖端领域和创新前沿。据保守估计,2018 年中国人工智能将为实体经济带来超过 1000 亿元的增长。预计 2018 年,新一代人工智能技术将与实体经济持续渗透融合,为零售、交通、医疗、制造业、金融等产业带来提效降费、转型升级的实际效能。无人商店、无人送货车、病例细胞筛查、数字孪生、智慧工厂、 3D 打印、智能投顾等新产品、新服务将大量涌现,从而加速培育产业新动能,开拓实体经济新增长点,有力推动我国经济结构优化升级。

市场应用空间将大步拓展。我国人工智能市场潜力巨大,应用空间广阔。近年来,我国在数据规模和产品创新能力等方面已进入世界第一梯队。数据规模方面,中国庞大的人口和发达的互联网提供了任何国家都难以企及的数据规模和标注成本优势。产品创新能力方面,中国企业在经历移动互联网时代的优胜略汰后,已能够在国外创新技巧的基础上,依据国内市场特点开发本土创新模式。预计 2018 年,上述优势将与实体经济的转型发展充分结合,情感识别、手势识别、语音助手、混合现实等个人智能化市场空间将进一步拓展,市场营销、网络安全认证、人力资源、办公智能等企业智能化重构将逐步推进,智能制造、智慧医疗、智慧能源、智能零售等产业化智能重构市场将逐步打开,人工智能的市场应用空间将大步拓展。

资本支持将趋向集中

顶层设计助推产业发展,各地方将积极布局规划。近年来,我国在国家层面密集出台一系列政策措施助推人工智能产业发展。在 2017年,人工智能先后出现在政府工作报告和党的十九大报告中,“人工智能 2.0”纳入“科技创新 2030—重大项目”,《新一代人工智能发展规划》确立“三步走”的发展目标,新一代人工智能发展规划推进办公室及新一代人工智能战略咨询委员会宣告成立,未来将有力推动人工智能重大项目落地。预计 2018 年,全国各地方将结合自身区位条件和产业基础,积极布局适合本地区特点的人工智能发展规划,实现从中央到地方的联动机制,进一步带动人工智能发挥经济和社会效益。

资本总量稳步增长,投融资层次将更为丰富。目前,中国人工智能投融资额占全球总量的近 35%,达到 635 亿元。其中,计算机视觉与图像、自然语言处理和自动驾驶三大领域投融资额占国内人工智能投融资总量的 60% 以上,成为资本热捧的焦点。此外,北京、广东、上海、浙江、江苏和四川等省市的投融资基础相对较好,是资本最为聚集的地区。2017 年上半年,国内投融资总额为 143 亿元,预计全年投融资规模较上年增长51%,增速较 2016 年下降 40%。预计 2018 年,国内人工智能领域的投融资总量稳中有增,资本将更多聚集在应用层细分领域的龙头企业,投资事件数量将减少,单笔投融资数目将增大,马太效应将日益凸显。投资焦点将从应用层逐步下移,AI 芯片等基础层和深度学习算法应用等技术层将获得资本市场的更大关注,投融资层次将更为丰富。

需要关注的几个问题    底层技术基础差

由于我国人工智能产业重应用技术、轻基础理论,底层技术积累薄弱,存在“头重脚轻” 的结构不均衡问题,使我国人工智能产业犹如建立在沙滩上的城堡,根基不稳。基层技术积累薄弱使人工智能核心环节受制于人,阻碍人工智能领域重大科技创新,不利于国内企业参与国际竞争,并使国民经济和国家安全存在远期隐忧。

从技术角度而言,国内人工智能的计算机视觉、语音识别、自然语言处理等应用技术已接近甚至达到国际先进水平,但在基础元器件、底层算法和理论研究等方面与国际水平差距较大,缺乏重大原创科技成果。

从资本角度而言,截至 2017 年 6 月,国内人工智能领域投融资主要集中于计算机视觉、自然语言处理和自动驾驶等应用技术领域,人工智能芯片领域的累计融资额仅占人工智能产业总融资额的 2.1%。相比之下,美国人工智能产业的这一比例高达31.5%。

从企业分布角度而言,截至 2017 年 6 月,国内人工智能芯片企业数量为 14 家,且均为规模较小的初创企业,难以满足芯片领域技术和资金门槛极高的要求,在数量上仅为美国的42%,而且缺乏像美国芯片领域的谷歌、英特尔、IBM、高通、英伟达等科技巨头。

应用路径不明朗

我国人工智能产业处于早期发展阶段,商业化应用路径尚不明确,商业落地的痛点突出,这些问题都与当前不断高涨的关注度形成鲜明对比,形成“雷声大雨点小”的现象,致使近期的实际商业价值变现难度较大。

从应用对象角度而言,由于人工智能产业与外界缺乏深入、有效的